Turing patterns and apparent competition in predator-prey food webs on networks.
نویسندگان
چکیده
Reaction-diffusion systems may lead to the formation of steady-state heterogeneous spatial patterns, known as Turing patterns. Their mathematical formulation is important for the study of pattern formation in general and plays central roles in many fields of biology, such as ecology and morphogenesis. Here we show that Turing patterns may have a decisive role in shaping the abundance distribution of predators and prey living in patchy landscapes. We extend the original model proposed by Nakao and Mikhailov [Nat. Phys. 6, 544 (2010)] by considering food chains with several interacting pairs of prey and predators distributed on a scale-free network of patches. We identify patterns of species distribution displaying high degrees of apparent competition driven by Turing instabilities. Our results provide further indication that differences in abundance distribution among patches can be generated dynamically by self organized Turing patterns and not only by intrinsic environmental heterogeneity.
منابع مشابه
Probabilistic patterns of interaction: the effects of link-strength variability on food web structure.
Patterns of species interactions affect the dynamics of food webs. An important component of species interactions that is rarely considered with respect to food webs is the strengths of interactions, which may affect both structure and dynamics. In natural systems, these strengths are variable, and can be quantified as probability distributions. We examined how variation in strengths of interac...
متن کاملDYNAMIC COMPLEXITY OF A THREE SPECIES COMPETITIVE FOOD CHAIN MODEL WITH INTER AND INTRA SPECIFIC COMPETITIONS
The present article deals with the inter specific competition and intra-specific competition among predator populations of a prey-dependent three component food chain model consisting of two competitive predator sharing one prey species as their food. The behaviour of the system near the biologically feasible equilibria is thoroughly analyzed. Boundedness and dissipativeness of the system are e...
متن کاملPhenotypic variation explains food web structural patterns.
Food webs (i.e., networks of species and their feeding interactions) share multiple structural features across ecosystems. The factors explaining such similarities are still debated, and the role played by most organismal traits and their intraspecific variation is unknown. Here, we assess how variation in traits controlling predator-prey interactions (e.g., body size) affects food web structur...
متن کاملPlant community composition determines the strength of top-down control in a soil food web motif
Top-down control of prey by predators are magnified in productive ecosystems due to higher sustenance of prey communities. In soil micro-arthropod food webs, plant communities regulate the availability of basal resources like soil microbial biomass. Mixed plant communities are often associated with higher microbial biomass than monocultures. Therefore, top-down control is expected to be higher ...
متن کاملDispersal-induced destabilization of metapopulations and oscillatory Turing patterns in ecological networks
As shown by Alan Turing in 1952, differential diffusion may destabilize uniform distributions of reacting species and lead to emergence of patterns. While stationary Turing patterns are broadly known, the oscillatory instability, leading to traveling waves in continuous media and sometimes called the wave bifurcation, remains less investigated. Here, we extend the original analysis by Turing to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 86 5 Pt 2 شماره
صفحات -
تاریخ انتشار 2012